$Exam_02$

Last Name	First Name	Student ID Number

Prob #	1	2	3	4	Total
Points	18	21	21	40	

Time: 80 Minutes

Last Name	First Name	Student ID Number

$$F(\mathbf{x}) = F(\mathbf{x}^*) + \nabla F(\mathbf{x})^T \Big|_{\mathbf{X} = \mathbf{X}^*} (\mathbf{x} - \mathbf{x}^*)$$

$$+ \frac{1}{2} (\mathbf{x} - \mathbf{x}^*)^T \nabla^2 F(\mathbf{x}) \Big|_{\mathbf{X} = \mathbf{X}^*} (\mathbf{x} - \mathbf{x}^*) + \cdots$$

$$\frac{\mathbf{p}^{T} \nabla F(\mathbf{x})}{\|\mathbf{p}\|} \qquad \frac{\mathbf{p}^{T} \nabla^{2} F(\mathbf{x}) \mathbf{p}}{\|\mathbf{p}\|^{2}} \quad \alpha_{k} = -\frac{\mathbf{g}_{k}^{T} \mathbf{p}_{k}}{\mathbf{p}_{k}^{T} \mathbf{A} \mathbf{p}_{k}}$$

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \mathbf{g}_k \quad \mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$$

$$L_i = \sum_{j \neq i} max(0, y_j - y_i + \Delta)$$

$$S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}$$

$$H(p,q) = -\sum_{x} p(x)log(q(x))$$

$$L_i = -log(\frac{e^{y_i}}{\sum_{j} e^{y_j}})$$

KL Divergence =
$$-\frac{1}{2}\sum(1 + \log(\sigma^2) - \mu^2 - \sigma^2)$$

Last Name	First Name	Student ID Number

1. Consider the following data where p is the input and t is the desired output

$$\begin{aligned} & \left\{ p_1 = \begin{bmatrix} 4.5 \\ 0 \end{bmatrix}, t_1 = 0 \right\}, \left\{ p_2 = \begin{bmatrix} -3.5 \\ 0 \end{bmatrix}, t_2 = 0 \right\}, \left\{ p_3 = \begin{bmatrix} 0 \\ 2.5 \end{bmatrix}, t_3 = 0 \right\}, \\ & \left\{ p_4 = \begin{bmatrix} 3.5 \\ 0 \end{bmatrix}, t_4 = 1 \right\}, \left\{ p_5 = \begin{bmatrix} -2.5 \\ 0 \end{bmatrix}, t_5 = 1 \right\}, \left\{ p_6 = \begin{bmatrix} 0 \\ 1.5 \end{bmatrix}, t_6 = 1 \right\} \end{aligned}$$

DESIGN a two-layer Perceptron neural network which will correctly classify the input data. Assume the activation function for all the nodes are hardlimit with the output of 0 and 1. Show the weight matrices and biases for both layers. Biases should be included in the weight matrix in the first column.

Fall 2024

Exam_02

Last Name	First Name	Student ID Number

Problem 1 Continued

Last Name	First Name	Student ID Number

2. Consider a convolutional neural network.

Note: Do NOT consider Biases.

Input layer:

Input to this CNN are color images of size 67x67x3 with the batch size = 90

Next layer is Conv2D layer:

Number of filters: 20, filter size: 7x7; stride: 2x2; padding: 2x2

Q1: What is the shape of the weight matrix for this layer?

Q2: What is the shape of the output (tensor) of this layer?

Next layer is Conv2D layer:

Number of filters: 30, filter size: 5x5; stride: 3x3; padding: 4x4

Q3: What is the shape of the weight matrix for this layer? Q3:

Q4: What is the shape of the output (tensor) of this layer?

Next layer is Flatten layer:

Q5: What is the shape of the output (tensor) for this layer?

Next layer is Dense layer:

Number of nodes: 50

Q6: What is the shape of the weight matrix for this layer?

Q6:

Q7: What is the shape of the output (tensor) for this layer?

Fall 2024

Exam_02

Last Name	First Name	Student ID Number

Problem 2 Continued

Fall 2024

Exam 02

Last Name	First Name	Student ID Number

3. Assuming that the actual output and the desired output of a neural network are given.

Complete the code for the following function to calculate the **mean cross entropy** loss for a batch of data.

Note:

Assume that actual output and desired output are logits. This means you have to apply **softmax** to both **actual outputs** and **desired outputs** before cross entropy calculation.

Notes:

Only use numpy. Do NOT use PyTorch or any other package.

You may use the numpy helper functions such as np.log() and np.sum()

<pre>def calculate_mean_cross_entropy_loss(y_hat,y):</pre>		
Import numpy as np		
""" This function calculates the mean cross entropy loss.		
:param y_hat: actual output [number_of_samples,number_of_classes].		
:param Y: Desired output [number_of_samples,number_of_classes].		
:return: mean cross-entropy loss		
иии		

Last Name

Fall 2024

Exam_02

Student ID Number

Problem 3 Continued		
	_	

First Name

Last Name	First Name	Student ID Number

4. Complete the following function. This function should initialize a variational autoencoder and return the mean loss over all the samples. **Only use numpy.**

Notes:

Ignore biases. Initialize all weights to **ones**. Assume all layers are **fully connected**.

Activation function for layers are **Sigmoid**.

Loss is: MSE + KL divergence

Decoder has the same structure as the encoder in reverse order. #

Complete the incomplete functions

```
import numpy as np
def variational_autoencoder(input, encoder_layers):
# input: numpy array of inputs [nof_train_samples, input_dimensions]
# encoder layers: list of integers representing number of nodes in
# each layer of the encoder. The last number represents the dimension of latent
space
# return: mean_loss
# Step 1 (8 points)
  list_of_encoder_weights,list_of_decoder_weights =
initialize_encoder_and_decoder_layers(encoder_layers,input)
# Step 2 (8 points)
  mu, var = encoder_forward_pass(input, list_of_encoder_weights)
# Step 3 (8 points)
  z = sampling_trick(mu,var)
# Step 4 (8 points)
  reconstructed_input = decoder_forward_pass(z, list_of_decoder_weights)
# Step 5 (8 points)
  mean_loss = calculate_loss(input,reconstructed_input, mu,sigma)
  return mean_loss
```

Last Name	First Name	Student ID Number

<pre>def initialize_encoder_and_decoder_layers(encoder_layers,input): # encoder_layers: list of integers representing number of nodes in</pre>
each layer of the encoder. The last number represents the dimension
of latent space # return list_of_encoder_weights, list_of_decoder_weights # as list of
numpy arrays

Last Name	First Name	Student ID Number

<pre>lef encoder_forward_pass(input, list_of_encoder_weights): # input: numpy array of inputs [nof_train_samples, input_dimensions] # return mu, var</pre> lef sampling_trick(mu,var) # return z # sampled latent variable	oblem 4 Continued
return mu, var	<pre>encoder_forward_pass(input, list_of_encoder_weights):</pre>
Ref sampling_trick(mu,var)	
lef sampling_trick(mu,var) : return z # sampled latent variable	ecurii mu, var
lef sampling_trick(mu,var) : return z # sampled latent variable	
<pre>lef sampling_trick(mu,var) : return z # sampled latent variable</pre>	
lef sampling_trick(mu,var) : return z # sampled latent variable	
lef sampling_trick(mu,var) : return z # sampled latent variable	
<pre>lef sampling_trick(mu,var) : return z # sampled latent variable</pre>	
<pre>lef sampling_trick(mu,var) : return z # sampled latent variable</pre>	
lef sampling_trick(mu,var) : return z # sampled latent variable	
lef sampling_trick(mu,var) : return z # sampled latent variable	
lef sampling_trick(mu,var) : return z # sampled latent variable	
lef sampling_trick(mu,var) : return z # sampled latent variable	
lef sampling_trick(mu,var) : return z # sampled latent variable	
lef sampling_trick(mu,var) : return z # sampled latent variable	
lef sampling_trick(mu,var) : return z # sampled latent variable	
lef sampling_trick(mu,var) : return z # sampled latent variable	
lef sampling_trick(mu,var) : return z # sampled latent variable	
lef sampling_trick(mu,var) : return z # sampled latent variable	
lef sampling_trick(mu,var) : return z # sampled latent variable	
lef sampling_trick(mu,var) : return z # sampled latent variable	
lef sampling_trick(mu,var) return z # sampled latent variable	
lef sampling_trick(mu,var) : return z # sampled latent variable	
lef sampling_trick(mu,var) return z # sampled latent variable	
lef sampling_trick(mu,var) return z # sampled latent variable	
lef sampling_trick(mu,var) return z # sampled latent variable	
lef sampling_trick(mu,var) return z	
def sampling_trick(mu,var) return z # sampled latent variable	
return z	gampling trick(my yar)
Tedari 2 Bamprea raceire varrabre	return z
	Court I ampled racette variable

Last Name	First Name	Student ID Number

Problem 4 Continued
<pre>def decoder_forward_pass(z, list_of_decoder_weights):</pre>
<pre>#z:numpy array of latent varibales [nof_train_samples,latent_dimension]</pre>
<pre># return reconstructed_input [nof_train_samples, input_dimensions]</pre>
<pre>def calculate_loss(input, reconstructed_input, mu, sigma):</pre>
<pre># input: numpy array of inputs [nof_train_samples, input_dimensions]</pre>
<pre># return mean_loss (MSE + KL divergence) it should be a single number</pre>